Theoretical Investigation of the Mechanisms of ERK2 Enzymatic Catalysis.

نویسندگان

  • Mikita M Misiura
  • Anatoly B Kolomeisky
چکیده

ERK2 are protein kinases that during the enzymatic catalysis, in contrast to traditional enzymes, utilize additional interactions with substrates outside of the active sites. It is widely believed that these docking interactions outside of the enzymatic pockets enhance the specificity of these proteins. However, the molecular mechanisms of how the docking interactions affect the catalysis remain not well understood. Here, we develop a simple theoretical approach to analyze the enzymatic catalysis in ERK2 proteins. Our method is based on first-passage process analysis, and it provides explicit expressions for all dynamic properties of the system. It is found that there are specific binding energies for substrates in docking and catalytic domains that lead to maximal enzymatic reaction rates. Thus, we propose that the role of the docking interactions is not only to increase the enzymatic specificity but also to optimize the dynamics of the catalytic process. Our theoretical results are utilized to describe experimental observations on ERK2 enzymatic activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A diffusion Michaelis-Menten mechanism: continuous conformational change in enzymatic kinetics.

We present a simple model which extends the Michaelis-Menten mechanism by incorporating a continuous protein conformational change in enzymatic catalysis. This model can represent a quantitative version for "rack" or "induced fit" mechanisms. In the steady-state it leads to an equation of the Michaelis-Menten form, but with the catalytic step at the active site showing strong dependence on solv...

متن کامل

Multi-Scale Computational Enzymology: Enhancing Our Understanding of Enzymatic Catalysis

Elucidating the origin of enzymatic catalysis stands as one the great challenges of contemporary biochemistry and biophysics. The recent emergence of computational enzymology has enhanced our atomistic-level description of biocatalysis as well the kinetic and thermodynamic properties of their mechanisms. There exists a diversity of computational methods allowing the investigation of specific en...

متن کامل

Phosphorylation releases constraints to domain motion in ERK2.

Protein motions control enzyme catalysis through mechanisms that are incompletely understood. Here NMR (13)C relaxation dispersion experiments were used to monitor changes in side-chain motions that occur in response to activation by phosphorylation of the MAP kinase ERK2. NMR data for the methyl side chains on Ile, Leu, and Val residues showed changes in conformational exchange dynamics in the...

متن کامل

In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function

Small molecules, such as solvent, substrate, and cofactor molecules, are key players in enzyme catalysis. Computational methods are powerful tools for exploring the dynamics and thermodynamics of these small molecules as they participate in or contribute to enzymatic processes. In-depth knowledge of how small molecule interactions and dynamics influence protein conformational dynamics and funct...

متن کامل

A Theoretical and Experimental Investigation for a New Reduced & Reliable Life Time Estimation Method of Insulating Materials

Abstract: The big share of electrical breakdown in electrical devices failure among other factors is caused by multitasking such as electrical insulation, mechanical support, energy dissipation, Energy storage, etc. which brings many attentions to lifetime estimation of said insulation material. Up to now, there was no-general theory had been suggested for lifetime estimation of mentioned insul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 120 40  شماره 

صفحات  -

تاریخ انتشار 2016